Online Course - Case Studies in Functional Genomics, Harvard University

Harvard University



Opportunity Cover Image - Online Course - Case Studies in Functional Genomics, Harvard University

About this course

We will explain how to start with raw data, and perform the standard processing and normalization steps to get to the point where one can investigate relevant biological questions. Throughout the case studies, we will make use of exploratory plots to get a general overview of the shape of the data and the result of the experiment. We start with RNA-seq data analysis covering basic concepts of RNA-seq and a first look at FASTQ files. We will also go over quality control of FASTQ files; aligning RNA-seq reads; visualizing alignments and move on to analyzing RNA-seq at the gene-level: counting reads in genes; Exploratory Data Analysis and variance stabilization for counts; count-based differential expression; normalization and batch effects. Finally, we cover RNA-seq at the transcript-level: inferring expression of transcripts (i.e. alternative isoforms); differential exon usage. We will learn the basic steps in analyzing DNA methylation data, including reading the raw data, normalization, and finding regions of differential methylation across multiple samples. The course will end with a brief description of the basic steps for analyzing ChIP-seq datasets, from read alignment, to peak calling, and assessing differential binding patterns across multiple samples.

Given the diversity in educational background of our students we have divided the series into seven parts. You can take the entire series or individual courses that interest you. If you are a statistician you should consider skipping the first two or three courses, similarly, if you are biologists you should consider skipping some of the introductory biology lectures. Note that the statistics and programming aspects of the class ramp up in difficulty relatively quickly across the first three courses. By the third course will be teaching advanced statistical concepts such as hierarchical models and by the fourth advanced software engineering skills, such as parallel computing and reproducible research concepts.

These courses make up 2 XSeries and are self-paced:

PH525.1x: Statistics and R for the Life Sciences

PH525.2x: Introduction to Linear Models and Matrix Algebra

PH525.3x: Statistical Inference and Modeling for High-throughput Experiments

PH525.4x: High-Dimensional Data Analysis

PH525.5x: Introduction to Bioconductor: annotation and analysis of genomes and genomic assays

PH525.6x: High-performance computing for reproducible genomics

PH525.7x: Case studies in functional genomics

What you'll learn

  • Mapping reads
  • Quality assessment of Next Generation Data
  • Analyzing RNA-seq data
  • Analyzing DNA methylation data
  • Analyzing ChIP Seq data

Length: 4 weeks
Effort: 2-4 hours per week
Price: FREE
Institution: HarvardX
Subject: Biology & Life Sciences
Level: Advanced
Languages: English
Video Transcripts: English

For more official information click "Further official information" below.



Eligible Countries
Opportunities
Publish Date
September 26, 2016
Link To Original




0 Comments